The economic impact of freshwater inputs to an estuarine fishery

Chris Kennedy George Mason University

Ed Barbier University of Wyoming 4/21/14

> IWREC 2014 Washington, DC

Freshwater inputs affect coastal ecology and productivity

• Salinity, nutrients, temperature

Increasing demand for freshwater, climate change \rightarrow reduced inputs, increased variability

Little information available on economic impacts

- Temperate estuaries among the most productive ecosystems in the world
- Coastal resources rarely prioritized

This research: investigate the relationship between freshwater inputs and fishery performance in the Georgia blue crab fishery

Blue crab (Callinectes sapidus)

- Second to shrimp in value to GA
- Coastal estuaries, small vessels, effectively open-access
- Depend on moderate salinity in numerous ways (spawning, recruitment, juvenile/adult mortality)
- Significant fishery declines over past 20 years, linked to drought/elevated salinity

Despite significant declines since mid-1990s, increasing demand has kept participation relatively high

Lowest point for fishery (early-2000s) coincided with historic drought conditions; reversal of a marginal recovery in 2010 similarly coincided with another severe drought

Drought has played a major factor, but water withdrawals have increased dramatically since 1950

Empirical Approach

Focus on six sounds

- Three riverine, three tidal
- Represents ~55% of harvests from 2001 to 2012
- Treat sounds as independent fisheries

Empirical Approach

Structural, bioeconomic model of the fishery; multiple life stages; quarterly transitions

- Do reductions in freshwater inputs negatively impact the fishery?
- If so, identify specific biophysical mechanisms

Focus on salinity

- Able to account for unmonitored freshwater sources
- Good proxy for flow in riverdominated sounds (estuaries)
- Increase statistical power

Empirical Approach

Empirical approach

Four-equation system

- Evolution of adult stock; recruitment
- Effort transition; harvest production function

$$\begin{aligned} X_{q+1,s} &= \theta_0 + \theta_1 sal_{q+1,s} + \theta_2 temp_{q+1,s} + \theta_3 \left(X_{q,s} - h_{q,s} \right) + \theta_4 R_{q,s} + \varepsilon \\ \ln \left(\frac{R_{q,s}}{X_{q+1,s}} \right) &= \eta_0 + \eta_1 sal_{q,s} + \eta_2 sal_{q-4,s} + \eta_3 temp_{q,s} + \eta_4 temp_{q-4,s} + \eta_5 X_{q-4,s} + \varepsilon \\ \ln \left(h_{q,s} \right) &= \alpha_0 + \alpha_1 \ln \left(tr_{q,s} \right) + \alpha_2 \ln \left(X_{q,s} \right) + \varepsilon \\ tr_{q,s} - tr_{q-4,s} &= \beta_0 + \beta_1 \left(p_{q-1,s} \cdot h_{q-1,s} - p_{q-5,s} \cdot h_{q-5,s} \right) + \varepsilon \end{aligned}$$

System estimated via Zellner's SUR

• Allows for correlation in error structure between equations

Data and Estimation

Harvest and stock abundance data from GDNR

- Commercial harvest: 1989-2012, > 200K trip obs
- Stock survey trawls (w/ salinity, temp): 1976-2012, >90K obs

Estimate system from 2001-2012 (data quality issues)

- Adults: escapement, juveniles (q-1) (1%); salinity (q) negative (10%)
- 1 ppt increase in salinity -> 4% lower abundance
- Recruitment: spawning stock (q-4) (1%); salinity (q) negative (1%); salinity (q-4) negative (5%)
- 1 ppt increase in salinity (q), 13% fewer juvs; 1 ppt increase in salinity (q-4), 7% fewer juvs
- Harvest and effort adjustment equations as expected

Robustness checks: Alternative salinity specifications, recruitment structure; full time series – results are robust

Economic Impact

Develop counterfactual salinity profiles from a simulated minimum flow standard (MFS)

• As if, in three riverine sounds, flow were maintained @ >25% of seasonal historical (>1960) averages

Sound (river)		Flow (ft ³ /s) (2001-2012)	Flow (ft ³ /s) (1960-2012)	25% min flow (ft ³ /s)	# binding quarters	Salinity (PSU)	25% min salinity (PSU)
Ossabaw (Ogeechee)	Mean	1,496	2,242	1,514	12 of 44	24.30	23.14
	SD	1,566	2,048	1,531		4.77	4.12
	Min	72	72	277		13.78	13.78
	Max	6,611	13,003	6,611		32.94	29.16
St. Andrews (Satilla)	Mean	1,641	2,280	1,748	18 of 44	26.25	24.92
	SD	2,035	2,456	1,938		3.94	2.94
	Min	43	43	301		17.13	17.13
	Max	9,213	12,513	9,213		35.17	29.45
St. Marys	Mean	538	622	560	16 of 44	29.53	27.74
	SD	664	613	638		3.30	2.24
	Min	24	24	97		23.38	23.38
	Max	2,693	3,507	2,693		37.55	30.98

Economic Impact

Perform counterfactual, recursive simulation of fishery outcomes in three riverine sounds, assuming MFS (Ossabaw shown)

Economic Impact

Improvements in fishery revenue ranging from 13-18%

		Total			Average		
Sound		Pounds	Revenue	Trips	Adults	Juveniles	
	Actual	5,859,303	\$5,443,606	13791	18.6	10.0	
Ossabaw	25% Min	6,751,835	\$6,413,160	14339	19.4	19.3	
	% Dif	15.2%	17.8%	4.0%	4.3%	92.8%	
	Actual	5,147,541	\$4,681,558	20385	13.3	7.1	
St. Andrews	25% Min	5,699,699	\$5,293,000	20727	14.8	17.3	
	% Dif	10.7%	13.1%	1.7%	11.4%	144.3%	
	Actual	2,464,449	\$2,056,656	10254	11.5	7.0	
St. Marys	25% Min	2,837,854	\$2,398,257	10452	12.4	17.8	
	% Dif	15.2%	16.6%	1.9%	8.1%	153.4%	

Sounds represent 35% of historical harvest volume, two largest rivers in GA not included (Savannah, Altamaha) due to lack of data (represent additional ~30%)

Discussion

Implied "value" of water

• ~ \$1-7 / acre-ft

Comparable to some agricultural valuations

- Estimated annuity value of water rights in Georgia (hedonic model of land prices, Petrie and Taylor, 2004): \$35
- Meta-analysis of values (Fredrick et al. (2006)) for Southeast US: \$18 mean, \$7 median (across all value types, including improved recreational opportunities)
- Caveats (among others)
- Uncertainty, thresholds, habitat interactions
- Not a marginal value; quarters with high fishery value likely correlated with value for agriculture, other uses

Discussion

A lower bound?

- Simulation represents small proportion fishery, other harvests could be considered to occur in outflow areas, but not included
- Unable to generate observed spikes in adult abundance
- Shrimp also depend on estuaries and moderate salinity
- Massive marsh dieback in 2000-2002 linked to elevated salinity, led to significant loss of land, reduced storm and erosion protection
- Recreational crabbing not considered at all, potentially more valuable than commercial fishery (Evans, 1996)

Georgia currently does not consider coastal resources in water management plans

- Common practice, water resource managers dominated by historical concern for agriculture, municipal needs
- Fishery interests far less coordinated... second-order "tragedy"

Thank you

Research supported by NOAA/NMFS Sea Grant Fellowship in Marine Resource Economics